Obtaining new composite biomaterials by means of mineralization of methacrylate hydrogels using the reaction-diffusion method.
نویسندگان
چکیده
The present paper describes the synthesis and characterization of a new polymeric biomaterial mineralized with calcium phosphate using the reaction-diffusion method. The scaffold of this biomaterial was a hydrogel constituted by biocompatible polyethylene glycol methyl ether methacrylate (PEGMEM) and 2-(dimethylamino)ethyl methacrylate (DMAEM), which were cross-linked with N-N'-methylenebisacrylamide (BIS). The cross-linking content of the hydrogels was varied from 0.25% to 15% (w/w). The gels were used as matrix where two reactants (Na2HPO4 and CaCl2) diffused from both ends of the gel and upon encountering produced calcium phosphate crystals that precipitated within the polymer matrix forming bands. The shape of the crystals was tuned by modifying the matrix porosity in such a way that when the polymer matrix was slightly reticulated the diffusion reaction produced round calcium phosphate microcrystals, whilst when the polymer matrix was highly reticulated the reaction yielded flat calcium phosphate crystals. Selected area electron diffraction performed on the nanocrystals that constitute the microcrystals showed that they were formed by Brushite (CaHPO4.2H2O). This new composite material could be useful in medical and dentistry applications such as bone regeneration, bone repair or tissue engineering.
منابع مشابه
Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications
Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site an...
متن کاملNovel Quaternary ammonium modified-tragacanth gum hydrogels for drug delivery applications with antimicrobial activity and release kinetic study
New antimicrobial hydrogels were prepared via reaction of functionalized-Tragacanth Gum biopolymer by glycidyltrimethylammonium chloride (QTG) with acrylamide (AM). Characterization of the QTG hydrogels with AM (QTG-AM) was carried out by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and 1HNMR. Swelling behaviour of the QTG hydrogels was investigated on the p...
متن کاملAntimicrobial Modified-Tragacanth Gum/Acrylic Acid Hydrogels for the Controlled Release of Quercetin
In this study, new antimicrobial hydrogels were prepared via reaction of functionalized-tragacanthgum (TG) biopolymer by quaternary ammonium functionalization of TG (QTG) with acrylic acid(AA). Characterization of the QTG hydrogels (QTG-AA) was carried out by FTIR,thermogravimetric analysis (TGA), and 1H NMR. Dynamic mechanical analysis, (DMA) wasconducted to characteriz...
متن کاملEpithelialization of hydrogels achieved by amine functionalization and co-culture with stromal cells.
The aim of this study was to develop a hydrogel which would be suitable for corneal cell re-epithelialization when used as a corneal implant. To achieve this, a series of hydrogels were functionalized with primary amines by post-polymerization reactions between amine compounds and glycidyl ether groups attached to the hydrogels. We report a strong correlation between the structure of the amine ...
متن کاملDevelopment of photocrosslinkable hyaluronic acid-polyethylene glycol-peptide composite hydrogels for soft tissue engineering.
Hyaluronic acid (HA; also called hyaluronan) is a naturally derived, nonimmunogenic, nonadhesive glycosaminoglycan that has important roles in several wound-healing processes. In previous work, we created photocrosslinkable glycidyl methacrylate-HA (GMHA) hydrogel biomaterials that were cytocompatible, biologically active, and had a decreased rate of hyaluronidase degradation compared with nati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Materials science & engineering. C, Materials for biological applications
دوره 42 شماره
صفحات -
تاریخ انتشار 2014